Tetrahedron Letters No.31, pp. 2099-2102, 1964. Pergamon Press Ltd. Printed in Great Britain.

DARSTELLUNG VON PHOSTON-DERIVATEN NACH DER

ACYL-LACTON-UMLAGERUNG

Acyl-lacton-Umlagerung XXXIII

F. Korte und H. Röchling

Organisch-Chemisches Institut der Universität Bonn

(Received 18 June 1964)

lpha-Alkyl- 2 und lpha-Halogen-lpha-acyl-lactone I 3 lassen sich nach dem Schema der Acyl-lacton-Umlagerung zu 3-Halogen-tetrahydrofuran-Derivaten II umlagern.

Es wurde nun untersucht, wie sich α -phosphorylierte α -Acyl-lactone unter den Bedingungen der Acyl-lacton-Umlagerung verhalten. Durch die Einführung eines Phosphonester-Restes erhält man eine weitere funktionelle Gruppe, die bei Beteiligung an der Umlagerungsreaktion die Bildung eines

Acyl-lacton-Umlagerung XXXII. Mitteil.: F. Korte, H. Efferoth und F. Wüsten, Chem. Ber. im Druck, Acyl-lacton-Umlagerung XXIX. Mitteil.: F. Korte und F. Wüsten, Chem. Ber. 96, 2841 (1963)

² F. Korte und K. H. Büchel, <u>Angew. Chem.</u> 71, 709 (1959); Neuere Methoden der präparativen organischen Chemie, Band III, S. 136, Verlag Chemie, Weinheim/Bergstr. 1961

³ F. Korte, K. H. Büchel, H. Dürbeck, D. Hausigk, H. Röchling, K. Trautner, H. Wamhoff und G. Weisgerber, XIXth. Intern. Congress of Pure and Applied Chemistry, London, Abstracts A, S. 278 (1963)

phosphorhaltigen Heterocyclus zur Folge hätte.

C- und O-Phosphorylierung

Zunächst wurde festgestellt, unter welchen Bedingungen die vorliegenden β -Dicarbonyl-Verbindungen C- bzw. O-phosphoryliert werden.

Wie zu erwarten, reagieren α -Halogen- α -acyl-lactone mit Triäthylphosphit zu Enolphosphaten:

C-Fhosphorylierung der Acyl-lactone erreicht man durch Umsatz ihrer α -Halogen-Derivate mit Natriumdiäthylphosphit und gelangt so zu den für die Umlagerung gewünschten Ausgangsprodukten VI:

Bei α -Äthoxalyl-lactonen (V, R = -COOEt) ist eine C-Phosphorylierung auf dem beschriebenen Wege nicht möglich, da die Reaktion unter Bildung eines O-Phosphats verläuft.

Umlagerung

Protonenkatalysierte Alkoholyse, die übliche Reaktionsbedingung der Acyl-lacton-Umlagerung, 4 führt bei den C-phosphorylierten α -Acyl-lactonen zur Spaltung der C-P-Bindung.

⁴ F. Korte und H. Machleidt, <u>Chem. Ber.</u> <u>90</u>, 2137 (1957)

lpha-Acyl-lpha-phosphonsäurediäthylester- γ -lactone VI lassen sich in äthanolischer Lösung mit 2 Mol Kaliumhydroxyd zu den ringoffenen Verbindungen IX umsetzen:

Diese Salze werden beim Ansäuern zu Oxaphosphol-Derivaten (X) ${\it cyclisiert}^5$

So erhält man aus α -Acetyl- γ -butyrolacton- α -phosphonsäurediäthylester XI den α -Acetyl- α -carboxy- γ -phostonsäureäthylester XII als farblose, kristalline Substanz. Durch franktionierte Kristallisation kann XII in zwei Isomere getrennt werden, die sich lediglich durch ihre Schmelzpunkte und IR-Spektren unterscheiden (A: Schmp. 159-162°, B: Schmp. 140-142°)

Die Behandlung der Carboxyl-phostone $\, \, X \,$ mit $PCl_5 \,$ führt zu Säurechloriden, die durch den Umsatz mit p-Toluidin als p-Toluidide charakterisiert werden.

Nach der von J. B. Conant⁶ vorgeschlagenen Nomenklatur können die erhaltenen Verbindungen in Analogie zu den Lactonen auch als "Phostone" bezeichnet werden.

⁶ J. B. Conant, <u>J. Am. Chem. Soc.</u> 39, 2679 (1917), J. B. Conant, <u>ibid.</u> 43, 1667 (1921)

Mit Diazomethan erhält man die Methylester der Säuren X. Beim Erhitzen auf 170° decarboxylieren die Säuren unter Abgabe der molaren Menge ${\rm CO_2}$, ein Hinweis auf das Vorhandensein einer β -Ketosäure.

Daβ es sich um Carbonsäuren und nicht um Phosphonsäuren handelt, geht neben der Decarboxylierung auch aus der Tatsache hervor, daβ im IR-Spektrum eine Säurecarbonylbande bei 1750/cm vorliegt, die nach Darstellung des Säureamids zur Amid-CO-Bande bei 1680/cm verschoben wird.